The little fish that could

Zebrafish help HSCI researchers fight human disease

Leonard Zon, MD, could be called HSCI’s most prolific aquarist. The Executive Committee Chair estimates that he has over 300,000 fish spread throughout his laboratories at the Harvard Department of Stem Cell and Regenerative Biology and Boston Children’s Hospital.

His collection isn’t very diverse, composed as it is entirely of zebrafish—minnow-like, freshwater, tropical fish that grow about an inch-and-a-half long. But Zon isn’t interested in winning best in show. Instead, he is leading a scientific movement to show that his striped fish could be humanity’s new animal of choice for drug discovery and studying disease.

Not only does the zebrafish require fewer facility resources than science’s go-to organism, the mouse, but fish are quicker to reproduce, easier to experimentally manipulate, and at least 70 percent of human protein-coding genes have analogs in the zebrafish, including those related to skin cancer, muscular dystrophy, and T cell leukemia.

“The zebrafish is now emerging as another powerful organism for the modeling and study of human diseases, and it is conceivable that zebrafish models will complement mouse models in the future,” Zon wrote in the December issue of Trends in Cell Biology, pointing out the accelerating increase in studies on zebrafish, from about 150 in 1995 to over 2,000 in 2013.

As a pediatric oncologist, Zon’s main purpose in using zebrafish is to help cancer patients. He is the first scientist to successfully apply basic research from the zebrafish to develop an FDA-approved treatment for human melanoma, and is now applying similar methods to find therapies for muscle and blood cancers.

One cancer Zon is pursuing is rhabdomyosarcoma, a rare muscle cancer diagnosed primarily in early childhood. Zebrafish, under certain conditions, develop tumors very similar to the human disease. He is currently using zebrafish embryos to identify which genes transform a normal muscle stem cell into a malignant tumor, as well as searching for factors that might suppress the cancer.

“One of the things that’s really interesting in zebrafish is that the embryos are completely transparent and you can watch the tumors invade the normal tissues,”
he said. “That’s a process that you can’t study in any other organism.”

Postdocs in Zon’s lab can expose the zebrafish embryos to multiple chemicals and literally watch changes in the fish’s development. In 2007, this technique led to the discovery of a type of prostaglandin that expands blood stem cells about 300 to 400 percent. Last fall, the prostaglandin found in Zon’s lab passed Phase Ib clinical trials as a therapy that increases the success of cord blood transplants.

A similar screen led to a major paper last November, in which Zon and fellow HSCI Executive Committee member Amy Wagers, PhD, showed that the same chemicals that stimulate muscle development in zebrafish can also be used to differentiate human stem cells into muscle cells in the laboratory, an historically challenging task that, now overcome, makes muscle cell therapy a more realistic possibility.

“This research demonstrates that over 300 million years of evolution, the pathways used in the fish are conserved through vertebrates all the way up to the human,” Zon said.

His passion for and success with zebrafish has helped make the animal a staple in HSCI faculty member laboratories across Boston, and an unexpected symbol for stem cell research.