Executive Committee

Susan Dymecki, MD, PhD

Susan Dymecki, MD, PhD

Harvard Medical School

The step-by-step differentiation of embryonic cells into different types of neurons lays the foundation for our sensory responses, motor commands, and cognitive behaviors. Our research explores such differentiation programs in mammals using a combination of genetic, embryological, and molecular biological methods. While the generation of such neural diversity is a complex process culminating in the most sophisticated of wiring circuits, one simplifying approach is to start by tracking the specification, differentiation, and migration paths taken by specific sets of cells originating from primitive neuroectoderm.... Read more about Susan Dymecki, MD, PhD

Jerome Ritz, MD

Jerome Ritz, MD

Dana-Farber Cancer Institute
Brigham and Women's Hospital
Harvard Medical School

Allogeneic hematopoietic stem cell transplantation (HSCT) is widely used in the treatment of patients with hematologic malignancies, but continues to be associated with severe toxicities. Both the effectiveness and toxicity of HSCT are mediated by donor T-cells in the stem cell graft. Those T cells that target antigens expressed on recipient leukemia cells play an important role in eradicating residual tumor cells and preventing leukemia relapse after transplant. In contrast, T cells that target antigens expressed by normal tissues in the recipient are the primary mediators of graft versus host disease (GVHD) and thus lead to substantial toxicities. My laboratory focuses on the assessment of donor immune function after HSCT and characterization of the immune mechanisms responsible for graft versus leukemia (GVL) and GVHD.... Read more about Jerome Ritz, MD

Amy Wagers, PhD

Amy Wagers, PhD

Harvard Department of Stem Cell and Regenerative Biology
Joslin Diabetes Center

Stem cells are rare and unique cells capable of generating many different types of cells needed in the body. In adult tissues, different organs contain different stem cell populations, each of which produces a subset of the body's cells. For example, hematopoietic (blood-forming) stem cells generate all of the red and white blood cells needed to deliver oxygen to body tissues, fight infection, and stop bleeding. Similarly, myogenic (muscle-forming) stem cells generate mature muscle fibers necessary for controlled contraction of skeletal muscle. Work in the Wagers Lab focuses on understanding the mechanisms that regulate the function of these blood-forming and muscle-forming stem cells so that their potential can be optimally exploited for the treatment of diseases such as cancer, anemia, muscular dystrophy, and diabetes.... Read more about Amy Wagers, PhD