Harvard Medical School

Susan Bonner-Weir, PhD

Susan Bonner-Weir, PhD

Joslin Diabetes Center
Harvard Medical School

With a series of rodent models Dr. Bonner-Weir has provided compelling evidence that adult pancreatic beta-cell mass increases in response to a metabolic need and have been examining the mechanisms of this postnatal pancreatic growth.

Elliot Chaikof, MD, PhD

Elliot Chaikof, MD, PhD

Beth Israel Deaconess Medical Center
Harvard Medical School
Wyss Institute for Biologically Inspired Engineering

Elliot L. Chaikof, MD, PhD, has promoted alliances of clinicians, engineers, chemists, and biologists and in the process developed biologically-inspired materials, devices, and pharmacotherapeutics based upon the principles of molecular engineering and nanofabrication technologies. These endeavors have enabled advances in cell-based therapies, artificial organs, and engineered living tissues, which define the evolving field of Regenerative Medicine.

George Q. Daley, MD, PhD

George Q. Daley, MD, PhD

Boston Children's Hospital
Harvard Medical School
Howard Hughes Medical Institute

George Q. Daley, M.D., Ph.D, seeks to translate insights in stem cell biology into improved therapies for genetic and malignant diseases. Important research contributions from his laboratory include the creation of customized stem cells to treat genetic immune deficiency in a mouse model (together with Rudolf Jaenisch), the differentiation of germ cells from embryonic stem cells (cited as a “Top Ten Breakthrough” by Science magazine in 2003), and the generation of disease-specific pluripotent stem cells by direct reprogramming of human fibroblasts (cited in the “Breakthrough of the Year” issue of Science magazine in 2008). 

Patricia K. Donahoe, MD

Patricia K. Donahoe, MD

Massachusetts General Hospital
Harvard Medical School

The Pediatric Surgical Research Laboratories focus on Developmental Biology, some areas of which hold promise for clinical application to benefit both pediatric and adult patients.

Iain A. Drummond, PhD

Iain A. Drummond, PhD

Massachusetts General Hospital
Harvard Medical School

We study kidney organogenesis using the zebrafish to explore conserved molecular mechanisms underlying kidney cell specification, differentiation, and organ patterning. We also study organ pathologies that results from mutations in genes required for cilia biogenesis and function. These include kidney cystic disease, retinal degeneration and left-right asymmetry defects.

Susan Dymecki, MD, PhD

Susan Dymecki, MD, PhD

Harvard Medical School

The step-by-step differentiation of embryonic cells into different types of neurons lays the foundation for our sensory responses, motor commands, and cognitive behaviors. Our research explores such differentiation programs in mammals using a combination of genetic, embryological, and molecular biological methods. While the generation of such neural diversity is a complex process culminating in the most sophisticated of wiring circuits, one simplifying approach is to start by tracking the specification, differentiation, and migration paths taken by specific sets of cells originating from primitive neuroectoderm.

Benjamin Ebert, MD

Benjamin Ebert, MD

Brigham and Women's Hospital
Harvard Medical School

We study the biology and treatment of cancer using hematopoiesis as a model system. The laboratory employs a range of genomic technologies as well as classical cellular and molecular biology approaches to investigate the biology of specific human diseases, particularly hematopoietic malignancies and disorders of red blood cell production.

Yick W. Fong, PhD

Yick W. Fong, PhD

Brigham and Women's Hospital
Harvard Medical School

Transcriptional mechanisms of pluripotency and cellular reprogramming

We study key transcriptional and gene regulatory events that lead to the acquisition and maintenance of pluripotency in embryonic stem cells (ESCs).  ESCs can self-renew or differentiate to produce most of the cells of the body. These distinct but developmentally relevant cell fates are defined by their unique gene expression signatures. Proper execution of these developmental programs requires the precise tuning of gene expression by transcription factors, coactivators and corepressors.  Indeed, aberrant transcriptional regulation is the root of many human diseases including developmental disorders, cancers and degenerative diseases. 

Wolfram Goessling, MD, PhD

Wolfram Goessling, MD, PhD

Brigham and Women's Hospital
Dana-Farber Cancer Institute
Harvard Medical School

Developmental signaling pathways govern the formation and function of stem cells, thereby holding the key to unlocking the promise of adult tissue regeneration, and to inhibiting cancer development. In our laboratory, we use zebrafish as the primary model to study the liver and explore the regulation of endodermal progenitor cell specification, organ differentiation and growth.

James Gusella, PhD

James Gusella, PhD

Massachusetts General Hospital
Harvard Medical School

My laboratory is focused on understanding nervous system disease using molecular genetic strategies, beginning with human patients and proceeding through in vitro and modeling studies, with the ultimate goal of improving diagnosis, management and treatment.

Pages